Resources

Learning materials and references for machine learning and science

Learning Resources

Curated collection of books, papers, courses, and tools for machine learning and scientific computing.

πŸ“š Essential Books

Machine Learning

  • Pattern Recognition and Machine Learning - Christopher Bishop
  • The Elements of Statistical Learning - Hastie, Tibshirani, Friedman
  • Hands-On Machine Learning - AurΓ©lien GΓ©ron
  • Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Scientific Computing

  • Python for Data Analysis - Wes McKinney
  • Computational Physics - Mark Newman
  • Numerical Recipes - Press, Teukolsky, Vetterling, Flannery

πŸŽ“ Online Courses

Machine Learning

Scientific Computing

πŸ› οΈ Tools and Frameworks

Python Ecosystem

  • Core: NumPy, Pandas, Matplotlib, Seaborn
  • ML: Scikit-learn, PyTorch, TensorFlow, JAX
  • Stats: SciPy, Statsmodels, PyMC
  • Viz: Plotly, Altair, Bokeh

R Ecosystem

  • Tidyverse: dplyr, ggplot2, tidyr
  • ML: caret, randomForest, e1071
  • Stats: lme4, survival, forecast

Julia

  • Core: DataFrames.jl, Plots.jl
  • ML: MLJ.jl, Flux.jl
  • Scientific: DifferentialEquations.jl

πŸ“„ Key Papers

Foundational

  • Rosenblatt (1958) - The Perceptron
  • Rumelhart et al. (1986) - Backpropagation
  • Vapnik (1995) - Support Vector Networks

Modern Deep Learning

  • Attention Is All You Need (2017) - Transformers
  • BERT (2018) - Bidirectional Transformers
  • GPT series - Language Models

Scientific ML

  • Physics-Informed Neural Networks
  • Neural ODEs
  • Graph Neural Networks

🌐 Websites and Blogs

Technical Blogs

Reference

πŸ“Š Datasets

General ML

Scientific


This page is continuously updated with new and relevant resources. Suggestions welcome!